PL EN
PRACA POGLĄDOWA
The Role of Cancer Stem Cells in Uveal Melanoma
 
Więcej
Ukryj
1
Department of Biophysics and Biology of Tumors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow Head: Prof. Martyna Elas, PhD (hab.)
 
2
Department of Ophthalmology, Jagiellonian University Medical College, Krakow, Poland Head: Prof. Bożena Romanowska-Dixon, PhD (hab.), MD
 
 
Data nadesłania: 03-06-2024
 
 
Data akceptacji: 17-07-2024
 
 
Data publikacji: 14-02-2025
 
 
Ophthalmology 2024;27(3):15-18
 
SŁOWA KLUCZOWE
STRESZCZENIE
Uveal melanoma is the most common type of eye cancer, with primary tumors typically originating in the choroid, though they can also develop in the iris or ciliary body. The condition is associated with high mortality due to metastases, particularly to the liver, which are often resistant to treatment. An important factor in this resistance is the presence of cancer stem cells or progenitor cells. These cells have the ability to self-renew and differentiate into diverse cell types, contributing to the development of resistant and heterogeneous cancer cell populations. There have been numerous efforts to identify cancer stem cell markers across various types of cancer, including uveal melanoma. This paper aims to review stem cell markers, such as CD133 and CD166, common to multiple cancers, alongside markers more specific to melanoma and uveal melanoma, including SOX2 and nestin. Despite extensive research, a definitive characterization of cancer stem cells in uveal melanoma has yet to be achieved.
REFERENCJE (28)
1.
Safa AR: Cancer stem cells, apoptosis pathways and mechanisms of death resistance. In: Oncogenomics: From Basic Research to Precision Medicine. Elsevier; 2018. p. 89–101.
 
2.
Clarke MF, Dick JE, Dirks PB, et al.: Cancer stem cells – Perspectives on current status and future directions: AACR workshop on cancer stem cells. In: Cancer Research. 2006. p. 9339–9344.
 
3.
Murphy GF, Wilson BJ, Girouard SD, et al.: Stem cells and targeted approaches to melanoma cure. Vol. 39, Molecular Aspects of Medicine. Elsevier Ltd; 2014. p. 33–49.
 
4.
Yu Y, Ramena G, Elble RC: The role of cancer stem cells in relapse of solid tumors. Vol. 4, Frontiers in Bioscience. 2012.
 
5.
Saha S, Pradhan NBN, Mahadevappa R, et al.: Cancer plasticity: Investigating the causes for this agility. Vol. 88, Seminars in Cancer Biology. Academic Press; 2023. p. 138–156.
 
6.
Ricardo S, Vieira AF, Gerhard R, et al.: Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011 Nov; 64(11): 937–944.
 
7.
Rodriguez SMB, Staicu GA, Sevastre AS, et al.: Glioblastoma Stem Cells — Useful Tools in the Battle against Cancer. Vol. 23, International Journal of Molecular Sciences. MDPI; 2022.
 
8.
Saginala K, Barsouk A, Aluru JS, et al.: Epidemiology of Melanoma. Vol. 9, Medical Sciences (Basel, Switzerland). NLM (Medline); 2021.
 
9.
Dhanyamraju PK, Patel TN: Melanoma therapeutics: a literature review. J Biomed Res. 2022; 36: 1–21.
 
10.
Heistein JB, Acharya U, Kumar S, Mukkamalla R. https://www.ncbi.nlm. nih.gov/books/NBK470409. Malignant Melanoma.
 
11.
Madjd Z, Erfani E, Gheytanchi E, et al.: Expression of CD133 cancerstem cell marker in melanoma: A systematic review and metaanalysis. Vol. 31, International Journal of Biological Markers. Wichtig Publishing Srl; 2016. p. e118–125.
 
12.
Roudi R, Korourian A, Shariftabrizi A, et al.: Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Invest. 2015 Jan 1; 33(7): 294–302.
 
13.
Prasmickaite L, Enges^ter B, Skrbo N, et al.: Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS One. 2010; 5(5).
 
14.
Mahmoud F, Shields B, Makhoul I, et al.: Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Vol. 17, Cancer Biology and Therapy. Taylor and Francis Inc.; 2016. p. 579–591.
 
15.
Fusi A, Ochsenreither S, Busse A, et al.: Expression of the stem cell marker nestin in peripheral blood of patients with melanoma. British Journal of Dermatology. 2010 Jul; 163(1): 107–114.
 
16.
Fusi A, Reichelt U, Busse A, et al.: Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. Journal of Investigative Dermatology. 2011; 131(2): 487–494.
 
17.
Santini R, Pietrobono S, Pandolfi S, et al.: SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014 Sep 18; 33(38): 4697–4708.
 
18.
McLean LW Foster WD, et al.: Uveal Melanoma: Location, Size, Cell Type, and Enucleation as Risk Factors in Metastasis. Hum Pathol. 1982 Feb; 13(2): 123–132.
 
19.
Peh GSL, Lang RJ, Pera MF, et al.: CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation. Stem Cells Dev. 2009 Mar 1; 18(2): 269–282.
 
20.
Thill M, Berna MJ, Grierson R, et al.: Expression of CD133 and other putative stem cell markers in uveal melanoma. Melanoma Res. 2011 Oct; 21(5): 405–416.
 
21.
Djirackor L, Kalirai H, Coupland SE, et al.: CD166high uveal melanoma cells represent a subpopulation with enhanced migratory capacity. Invest Ophthalmol Vis Sci. 2019 Jun 1; 60(7): 2696–2704.
 
22.
Jin B, Zhang P Zou H, et al.: Verification of EZH2 as a druggable target in metastatic uveal melanoma. Mol Cancer. 2020 Mar 4; 19(1): 52.
 
23.
Clark DW, Palle K: Aldehyde dehydrogenases in cancer stem cells: Potential as therapeutic targets. Ann Transl Med. 2016 Dec; 4(24): 518.
 
24.
Djirackor L, Shakir D, Kalirai H, et al.: Nestin expression in primary and metastatic uveal melanoma - possible biomarker for high-risk uveal melanoma. Acta Ophthalmol. 2018 Aug 1; 96(5): 503–509.
 
25.
Franco SS, Szczesna K, Iliou MS, et al.: In vitro models of cancer stem cells and clinical applications. Vol. 16, BMC Cancer. BioMed Central Ltd.; 2016.
 
26.
Herreros-Pomares A: Identification, Culture and Targeting of Cancer Stem Cells. Vol. 12, Life. MDPI; 2022.
 
27.
Greve B, Kelsch R, Spaniol K, et al.: Flow cytometry in cancer stem cell analysis and separation. Vol. 81 A, Cytometry Part A. 2012. p. 284–293.
 
28.
Tang S, Hu K, Sun J, et al.: High Quality Multicellular Tumor Spheroid Induction Platform Based on Anisotropic Magnetic Hydrogel. ACS Appl Mater Interfaces. 2017 Mar 29; 9(12): 10446–10452.
 
eISSN:1689-362X
ISSN:1505-2753
Journals System - logo
Scroll to top